
Autonomous Robots
https://doi.org/10.1007/s10514-021-10006-9

Expert Intervention Learning:
An online framework for robot learning from explicit and implicit human feedback

Jonathan Spencer · Sanjiban Choudhury · Matthew Barnes · Matthew
Schmittle · Mung Chiang · Peter Ramadge · Sidd Srinivasa

Received: 31 January 2021 / Accepted: 30 June 2021 / Published online: 19 October 2021

Abstract Scalable robot learning from human-robot
interaction is critical if robots are to solve a multitude

of tasks in the real world. Current approaches to imita-
tion learning suffer from one of two drawbacks. On the
one hand, they rely solely on off-policy human demon-

stration, which in some cases leads to a mismatch in
train-test distribution. On the other, they burden the
human to label every state the learner visits, render-
ing it impractical in many applications. We argue that

learning interactively from expert interventions enjoys
the best of both worlds. Our key insight is that any
amount of expert feedback, whether by intervention or

non-intervention, provides information about the qual-
ity of the current state, the quality of the action, or
both. We formalize this as a constraint on the learner’s

value function, which we can efficiently learn using no
regret, online learning techniques. We call our approach
Expert Intervention Learning (EIL), and evaluate it on
a real and simulated driving task with a human ex-
pert, where it learns collision avoidance from scratch
with just a few hundred samples (about one minute) of
expert control.

1 Introduction

Many complex machines we regularly interact with are
designed to be operated by humans, and expert hu-
mans demonstrate incredible mastery of complex con-

Jonathan Spencer, Mung Chiang, Peter Ramadge
Princeton University
E-mail: {j.spencer,chiangm,ramadge}@princeton.edu

Sanjiban Choudhury, Matthew Barnes, Matthew Schmittle,
Sidd Srinivasa
University of Washington
E-mail: {schoudhury,mbarnes,schmttle,sidd}@cs.uw.edu

Fig. 1: In intervention learning the expert trains a
learner by taking over only when needed, recovering

the car and returning control to the learner. A good
learner can learn a lot from when the expert does and
doesn’t intervene.

trol tasks. However, as self-driving cars [38], robotic
factory arms [29], and autonomous helicopters [12] have
gradually developed controllers to automate many sim-
ple tasks, the human’s role has shifted to that of a su-
pervisor that engages or disengages the autopilot, as-
suming full control only when necessary. This mecha-
nism of supervision and intervention is natural for the

expert because it mimics what often occurs in human-
human apprenticeship. A goal in robotics is that we
similarly endow a robot with all of the human’s exper-
tise in a way that is both natural and efficient for the
expert human instructor.

Consider the example of training a robot controller
for high speed rallycar driving (Fig. 1). While an ex-
pert human driver can easily demonstrate this task by
driving around a track, we may require long hours of
driving to cover all possible input conditions. Even so,

2 Jonathan Spencer et al.

Execute learner and
intervene if not “good enough”

Aggregate
all intervention data

Update
action-value function

Updated learner spends more time
being “good enough”

Fig. 2: Overview of EIL. It proceeds iteratively, using the current learner to collect intervention data and map said
data to constraints on learner value function. It then aggregates constraints and updates the learner on all of the
data

the slightest distribution mismatch between learner and
expert can result in compounding errors [35].

Another option is to interactively query the expert
on their preferred action [36] while the learner is in
control of the car. Although interactive learning ad-
dresses the distribution mismatch problem, it is im-

practical due to several human-robot-interaction issues.
First, the learner needlessly queries the expert in states
that the expert, and ideally a good learner, would never
visit [26]. Second, in this approach the expert’s sugges-

tions are not used at run-time, so the expert has no
actual control of the how the car moves and does not
experience the consequences of the feedback from their

actions. This results in degraded expert feedback due to
delayed response and subsequent over-corrections [37].

On the other hand, if we give the human expert the
freedom to intervene and assume control at will, how
can the learner correctly interpret such interventions?

Consider the scenario in Fig. 1 where the expert nom-
inally monitors the car without any input, similar to
the way they might engage with cruise control or an

autopilot. As soon as the expert senses that the learner
is skidding off the track, they take over, recover the car
and toggle control back to the learner. This example
illustrates some important truths:

– Expert interventions are natural to provide, and
contain useful information.

– In many cases the expert simply wants the learner
to perform well enough so the expert doesn’t have
to intervene.

A good learner should now learn not only how to re-
cover in the future, but also the fact that driving near
the middle of the track is much more preferable than
being near the edge. Ideally the learner trajectories look
something like Fig. 2; as the learner improves, the ex-

pert needs to intervene less and less.

Our key insight is that to learn a policy that is opti-
mal everywhere you must query the expert everywhere.

If you can settle for good enough, you can use implicit
and explicit feedback to quickly learn a level set of the
value function rather than learning the value function
completely.

We formalize this as Expert Intervention Learning
(EIL). When the expert is not in control of the robot,
we assume that the state-action pair is good enough.
When the expert does occasionally intervene, this pro-

vides both implicit feedback about the current state
being “bad” and a near-optimal trajectory to return to
a “good” state. Fig. 2 shows an overview of the algo-

rithm. At every iteration, we execute the learner, col-
lect intervention data, aggregate it, map to constraints
on the learner’s action-value function, and update the

learner.

Our contributions and the organization of the re-
mainder of the paper are as follows:

1. In Section 3, we formalize the notion of good enough
performance and frame the mixed control problem
in the context of existing work.

2. We introduce an algorithm in Section 4 for solving
mixed implicit-explicit feedback problems and show
that it has desirable performance guarantees.

3. In Section 5, we empirically demonstrate that our al-

gorithm reduces the number of explicit expert inter-
actions with the system compared to baseline meth-
ods both in simulation and using a real robot.

This paper amplifies and expands on [42]. We ex-
pand and clarify much of the language and expand our
discussion of related work, adding in recent relevant
publications. We also include updated proofs and in
the appendix provide a counter-example for an alter-
native method. Finally, in Section 5.3 we perform an
additional experiment to analyze the impact that in-
consistent, suboptimal experts have on learning.

Expert Intervention Learning: 3

2 Related Work

The most traditional approach to imitation learning is

a technique known as Behavioral Cloning (BC), where

the learner gathers a dataset of expert states and ac-

tions, and trains a classifier/regressor on that dataset.

While straightforward to implement, BC is known to

require a large amount (quadratic in trajectory length)

of expert demonstration trajectories in order to achieve

expert performance [1,13]. This results because learner

policies invariably make mistakes and deviate from the

expert, inducing a significantly different distribution of

states from what the expert originally modeled, an ef-

fect known as covariate shift [4,33]. Many innovations

in imitation learning are attempts to correct for that co-

variate shift and reduce the required number of expert

samples.

DAgger-style Algorithms

DAgger is a foundational algorithm which addresses

covariate shift in a provably efficient way by querying

the expert online [36]. In DAgger, the learner rolls out

their current policy, then queries the expert for action

labels corresponding to each state visited by the learner.

The learner aggregates this set of learner-state, expert-

actions with that of previous iterations, trains a new

policy on the combined dataset, and iterates. This ap-

proach requires a number of expert labels that is only

linear in trajectory length. DAgger has been success-

fully applied to autonomous flight [37] and visual nav-

igation [18,23]. In cases of extreme covariate shift and

expert/learner model mismatch, DAgger is known to

be optimal [43], though in less extreme cases DAg-

ger introduces redundancy, which can be exploited.

DAgger indiscriminately queries the expert for a label

at every state the learner visits, which is challenging

from a practical usability standpoint. Querying typi-

cally happens off-line and can be both cognitively de-

manding and unsafe [26], inspiring alternative methods

to introduce distributional diversity e.g. by injecting

noise [27]. Since learner queries indiscriminately, many

learner queries are also redundant, leaving room for

even greater sample efficiency by intelligently limiting

when the expert is queried.

Active Learning for Control

Several DAgger-style algorithms employ active learn-

ing, where the robot learner decides after observing

each new sample whether or not to query the expert

for a label. This decision can be based on a threshold

of action-classifier confidence [11,32,17], distributional

distance or discrepancy [24,34], query by committee

[21], or a combination of state novelty and historical

error [28]. Many of these active learning frameworks

can query the expert in a batch setting off-line, how-

ever most (including DAgger) also query the expert

at execution time. This results in a mixed control set-

ting, where the executed trajectory switches back and

forth between the human and robot on a per-sample

basis and the assignment of control (gating) is at the

behest of the robot. Robot-gated mixed control and on-

line active learning in robotics is problematic because

the type of samples required are burdensome, especially

in continuous control settings. Humans are sensitive to

latency and timing in mixed control, and demanding

sporadic samples in real-time is not only more burden-

some than uninterrupted trajectories, but can also re-

sult in undesirable and unstable system dynamics [22,

26].

Learning from Interventions

To this end, we instead consider learning from inter-

ventions; mixed control where the human initiates the

hand-off. This approach reduces (though does not elim-

inate) the alertness burden on the expert, and allows

them to determine the exact timing of hand-off in a way

that is more convenient and stable for them. However,

because the human initiates the handoff, it can be chal-

lenging to make use of the entire trajectory since the hu-

man criteria for intervening isn’t explicitly known. The

HG-DAgger algorithm [22] (and similarly [16]), col-

lects intervention data, but uses only the human labeled

portions of the trajectory (the orange portions of Fig. 2)

as the online batch update for DAgger. In addition

to reducing expert burden by requiring less demanding

samples, this reduces the overall number of samples re-

quired to achieve baseline performance in driving tasks.

A similar approach [8,7] applies the DAgger update

using the human labelled portions, but uses a hierar-

chical learner policy based on sub-goals to account for

delays in human reaction time. In reinforcement learn-

ing settings where a reward signal is available, inter-

ventions feedback can safely guide state visitation and

manually shape reward [40].

While mixed control is relatively straightforward in

driving tasks where the human may simply take the

wheel, robotic manipulator and other domains are more

complex, often requiring force-feedback. In that con-

text, intervention feedback is less straightforward to

interpret since the corrective trajectory cannot be as-

sumed optimal. Successful approaches have interpreted

interventions as noisily optimal via inverse reinforce-

ment learning [25], as Bayesian estimates of human pa-

rameters [6], as point comparisons for iteratively up-

dating a score function [20], and as sparse indicators of

important features [5]. Like the driving-focused inter-

vention learning, these approaches update the learner

policy based on the explicit control data provided by

the human. A primary way in which we build on cur-

4 Jonathan Spencer et al.

rent approaches is by considering how to learn from the

implicit signals in the times when the expert is not in

control (the green portions of Fig. 2). This addition,

first introduced in [42] is unique among the Learning

from Intervention literature.

Implicit Feedback

Voluntary expert intervention permits the inference of

deeper meaning from the timing and nature of expert

feedback. Binary feedback is a form of interactive learn-

ing[3] where a supervisor provides real-time approval

or disapproval of the robot, and readily lends itself to

the inference of implicit signals. These binary signals

can be used to learn a supervisor’s bias towards posi-

tive/negative and exploit that to infer implicit signaling

from inaction [30], or that feedback can form an ad-

vantage function for the current policy [31]. Addition-

ally, [9] the learner can interpret the feedback adap-

tively based on previous feedback. We build on these

techniques by using demonstrations rather than explicit

positive/negative labels, and infer the approval or dis-

approval based on the timing of interventions. We limit

the scope of this work to a coarse model of human in-

tervention that provides regret guarantees, leaving for

future work the intriguing questions of potential differ-

ences between multiple experts, internal human state

[39], trust [10], and cooperation [19,15] in this setting.

This work builds upon the growing field of learning

from interventions by considering what we can learn

from the times when the human decides not to inter-

vene. We clarify and expand on [42], adding proofs and

counter-examples and an additional experiment to bet-

ter make our case. We differ from existing corrective

feedback algorithms and active learning DAgger-style

algorithms because we aim to learn from the timing of

the expert correction in addition to copying the actions

themselves. Rather than directly learning the policy, we

instead learn a score function to coarsely separate bad

and good state-actions. The different modes of feedback

(explicit/implicit) encode to different constraints on our

score function. Since we care only about learning a con-

troller good enough to avoid intervention, we quickly

learn a score function with the proper level set dividing

good and bad state-actions. This approach to learning

from both implicit and explicit feedback in continuous

real-time mixed-control setting is novel, efficient, and

easy to implement. It is also natural, in the sense that

it mimics the way that humans often teach one another.

3 Problem Formulation

We introduce a modified formulation of imitation learn-

ing, with the the object that the robot merely perform

good enough such that the expert doesn’t have to inter-

vene. This is inspired by practicalities of domains such

as self-driving or manipulation where there are several

ways to accomplish the task, and the user doesn’t really

care to distinguish.

We model the problem as Markov Decision Pro-

cess with unknown/unspecified rewards (MDP\R). Let

M(S,A, P, T, d0) be a tuple consisting of a set of states

S, a set of actions A, an environment transition func-

tion P : S×A → ∆(S) where ∆(S) is a |S|-dimensional

probability simplex, a fixed time horizon T , and an

initial state distribution d0 ∈ ∆(S). We restrict the

learner to a class of policies π : S → A, π ∈ Π. Let dtπ
be the state distribution induced by initializing at d0
and following policy π for t steps, then dπ = 1

T

∑T
t=1 d

t
π

is the average distribution of states induced by policy

π.

We assume the following interaction model between

a human expert and robot learner:

1. The expert deems a region of the state-action space

(s, a) ∈ G to be good enough.

2. When the robot is in G, the human does not inter-

vene. The robot remains in control even though it

may select actions different from what the expert

would have chosen.

3. As soon as the robot departs G, the expert takes

over and controls the system back to G.

Although this is a natural human-robot interaction

model, it inextricably mixes state distributions induced

by both expert and learner. To circumvent this prob-

lem, we modify the MDP M. If the expert intervenes

at state st before the end of the episode t < T , we mark

st as an absorbing terminal state. We wish to minimize

the average time spent out of good states,

minimize
π∈Π

Es∼dπ [1{(s,π(s))/∈G}].

However, the objective above disregards the inter-

vention actions demonstrated by the expert. Although

the expert’s actions are off-policy w.r.t. π, they can help

regularize learning and speed up convergence. Let πE
be the expert policy. Let dIπ be the average distribution

of intervention states induced by policy π, i.e. states

that the expert visits after π leaves G. We also wish to

minimize the average misclassification of intervention

actions

minimize
π∈Π

EsI∼dIπ [1{π(sI) 6=πE(sI)}].

We combine these objectives to define a modified

imitation learning problem.

Problem 1 Find a policy that minimizes both the av-

erage time spent outside of good enough region and the

Expert Intervention Learning: 5

(s, a) 2 G(s, a) 2 G (s, a) 2 I

Fig. 3: Given a learner and human intervention trajec-

tory, we can flag the data with three potential categories

based on the timing of the correction - good enough

state-actions G, bad state-actions G and intervention

state-actions I

average misclassification of intervention actions on its

own induced distribution:

min
π∈Π

Es∼dπ [1{(s,π(s))/∈G}]︸ ︷︷ ︸
stay in good enough region

+ λEsI∼dIπ [1{π(sI)6=πE(sI)}]︸ ︷︷ ︸
learn intervention actions

(1)

where λ is a tuning constant.

We note that (1) is non-convex for two reasons.

First, the term inside the expectation is non-convex.

Secondly, and more importantly, the induced distribu-

tions dπ and dIπ are non-convex (even for simple convex

policy classes). In the next section, we will discuss how

we efficiently optimize this objective. Finally, we em-

phasize that Problem 1 combines the best attributes of

two extreme paradigms of imitation learning:

1. Easy to provide labels as in Behavior Cloning [35] :

In fact, we argue it is even less burdensome to pro-

vide a sparse set of interventions.

2. Correctly measures the learner induced loss as in

DAgger [36] : Moreover, we do so without having

to require the expert to provide labels in all the

states the learner visits.

4 Approach

We present Expert Intervention Learning (EIL), a no-

regret online algorithm that learns from interventions

alone. EIL builds upon and further generalizes the key

insight of DAgger [36] – any imitation learning ob-

jective can be reduced to an online, sequential game.

Crucially, unlike DAgger, EIL does not require the

expert to label every state the learner enters. We show

that EIL indeed enjoys the best of many worlds - it is

practical, requires minimal user effort and has strong

performance guarantees.

4.1 Modelling interventions as action-value constraints

We restrict the learner to a policy class Π of greedy

policies with respect to differentiable action-value cost

functions Qθ(s, a) such that

π(s) = arg min
a
Qθ(s, a) (2)

Because there is no notion of environment reward R,

the function Q does not carry the same meaning as it

does in a reinforcement learning (RL) and thus does

not maintain the property of Bellman consistency (i.e.

Q(s, a) = R(s, a) + Es′∼P (s′|s,a)[maxQ(s′, ·)]). As a re-

sult, we permit any differentiable function class, includ-

ing linear feature weights or neural networks. We choose

to use the notation Q because, as in RL, our policy class

is a greedy minimizer over the state-action function.

Rather than the Bellman consistency requirement, our

score function Q will have different constraints which

we impose to shape it. Our approach can be thought

of as a principled way to continuously add constraints

and shape Q from multiple sources of feedback.

In our case we minimize cost, so higher Qθ(s, a) in-

dicates an undesirable state-action pair. Hence, we can

model a good enough state-action pair (s, a) ∈ G as a

threshold constraint on the action-value

Qθ(s, a) ≤ B ∀(s, a) ∈ G (3)

where B is a scalar threshold marking when a state-

action falls in the Bad region. The precise value of B

is irrelevant as it can be thought of as a way of offset-

ting the action-value estimator (we use B = 0 for our

experiments).

Let an episode be represented by the learner’s tra-

jectory ξL = (s0, a0, · · · , sf , af) and the subsequent ex-

pert intervention trajectory ξE = (sE0 , a
E
0 , · · · , sEf , aEf).

Fig. 3 illustrates such an episode. Let [α, β)◦ξ represent

a snippet of trajectory ξ from fraction α up to β where

α, β ∈ [0, 1], α ≤ β. We map snippets of ξL and ξE to

three non-exclusive categories

1. Good enough state-actions: By not intervening dur-

ing the beginning portion of ξL, the expert has im-

plicitly labeled those actions as good enough, thus

we label the beginning 1−αL fraction of ξL as such.

(s, a) ∈ G ∀(s, a) ∈ [0, 1− αL) ◦ ξL (4)

2. Bad state-actions: Upon intervention, the learner

policy has clearly failed, bringing the robot into a

bad state. As such, the last αL fraction of ξL we

label as bad states. Although the human expert

chooses good actions we will learn to emulate, the

state at which they take over may be undesirable.

6 Jonathan Spencer et al.

In such cases, we can choose to label the first αE

fraction of ξE as undesirable state-actions.

(s, a) /∈ G ∀(s, a) ∈ [1−αL, 1]◦ ξL∪ [0, αE)◦ ξE (5)

3. Intervention state-actions: All (s, a) pairs in ξE are

labeled as intervention pairs.

(s, a) ∈ I ∀(s, a) ∈ ξE (6)

We discuss how to choose αL and αE in Section 5.

We then map each of these categories to constraints

on the action-value function

1. Good enough state-actions map to values below a

threshold

Qθ(s, a) ≤ B ∀(s, a) ∈ G. (7)

2. Bad state-actions map to values that are above a

threshold

Qθ(s, a) > B ∀(s, a) ∈ G. (8)

3. Intervention state-actions map to a relative action-

value constraint requiring we emulate the expert in

that state

Qθ(s, a) < Qθ(s, a
′) ∀(s, a) ∈ I, a′ 6= a. (9)

Combining these constraints, we can express Prob-

lem 1 differently, as an optimization over action-value

estimates

min
θ

∑
(s,a)∈G

1{Qθ(s,a)>B} +
∑

(s,a)∈G

1{Qθ(s,a)≤B}

+ λ
∑

(s,a)∈I

∑
a′ 6=a

1{Qθ(s,a)≥Qθ(s,a′)}.
(10)

4.2 Reduction to online, convex optimization

The objective in (10) is non-convex in Qθ. To prove

performance guarantees, we apply convex relaxations

to each of the terms1 by using a convex hinge penalty.

1. Good enough state-actions corresponding to the up-

per bound constraint (7) relax to

`1B(s, a, θ) = max(0, Qθ(s, a)−B) ∀(s, a) ∈ G. (11)

2. Bad state-actions corresponding to the lower bound

constraint (8) relax to

`2B(s, a, θ) = max(0, B −Qθ(s, a)) ∀(s, a) ∈ G. (12)

1 While we assume Qθ(·) is convex to prove regret guaran-
tees, the update can be applied to non-convex function classes
like neural networks as done in similar works [45]

3. Intervention state-actions correspond to a relative

action-value constraint (9) relax to

`C(s, a, θ) =
∑
a′

max(0, Qθ(s, a)−Qθ(s, a′)) ∀(s, a) ∈ I

(13)

We combine the first two loss functions as a bounds

loss `B(·) = `1B(·) + `2B(·). We can think of this as an

implicit loss inferred from when the expert chooses to

intervene. The loss `C(·) is a classification loss. We can

think of this an an explicit loss which uses the ac-

tual actions executed by the expert. The total loss is

a weighted sum of losses `(·) = `B(·) + λ`C(·).
We now formally state the relaxed convex optimiza-

tion problem using dπθ (s, a) and dIπθ (s, a), the distribu-

tions induced by πθ of nominal learner and expert inter-

vention state, respectively. The objective is to minimize

the expected loss over these induced distributions

min
θ

E(s,a)∼dπθ (s,a)`B(s, a, θ)+λE(s,a)∼dIπθ (s,a)
`C(s, a, θ)

(14)

Even though the losses themselves are convex in θ,

the optimization is still non-convex because θ impacts

the distributions dπθ (s, a) and dIπθ (s, a) over which the

expectations are evaluated. We leverage a key insight

from DAgger [36] – reduce the non-convex imitation

learning objective (14) to a sequence of convex games.

The game occurs between an adversary that creates

loss functions and a learner that selects parameters.

We define the game as follows: At round i, let θi be

the parameters of the current learner. Let di = dπθi
and dIi = dIπθi

be the induced distributions. The adver-

sary chooses a convex loss `i(θ) = E(s,a)∼di`B(s, a, θ) +

λE(s,a)∼dIi `C(s, a, θ). The learner proposes a parameter

θi+1. The average regret is defined as

γN =
1

N

N∑
i=1

`i(θi)−min
θ

1

N

N∑
i=1

`i(θ). (15)

As long as the learner chooses an update that drives

regret γN → 0 as N →∞ (no regret), we show in Sec-

tion 4.5 that the learner finds a near-optimal solution

to (14). We choose Follow-the-Leader (FTL) [41]:

θi+1 = arg min
θ

i∑
j=1

`j(θ)

= arg min
θ

i∑
j=1

E(s,a)∼dj `B(s, a, θ)

+ λE(s,a)∼dIj `C(s, a, θ).

(16)

Expert Intervention Learning: 7

Algorithm 1 Expert Intervention Learning (EIL)

Initialize data sets G, G and I as {}
Initialize π1 to any policy in Π
for n = 1, . . . , N do

Execute learner policy πθi .
Get learner trajectory ξL and subsequent
intervention trajectory ξE (if any).
Aggregate (s, a) pairs to datasets G, G and I.
Minimize `B(s, a, θ) + λ`C(s, a, θ) on total dataset
to compute new parameter θi+1.

return best parameter from θ1, . . . , θN on validation.

FTL updates guarantee γN = Õ(1
N) for strongly convex

`i, and can be realized by simply aggregating data as it

is collected. Alternately, one can apply online gradient

descent [46] to avoid storing data.

4.3 Algorithm

Algorithm 1 describes EIL. At each iteration i, the

learner is executed to collect trajectories ξL and ξE .

These trajectories are then mapped to the 3 dataset

buckets described in Section 4.1. These are then aggre-

gated with previous datasets and the learner is trained

to solve (16). The intution is that over iterations, we

are building up the set of inputs the learner is likely

to experience during its execution. Doing well on this

dataset amounts to doing well on (14) – a concept we

explore further in Section 4.5.

4.4 Comparison to other imitation learning

frameworks

Table 1 places EIL with other comparable imitation

learning algorithms. BC [35] never lets the learner be in

control, leading to issues such as covariate shift. DAg-

ger [36] lets the learner be in control, but requires the

expert to label the learner states, which the authors re-

port to be challenging [37]. HG-DAgger [22,16,8] ap-

proaches are closest to EIL, and use interventions, but

only optimize `C(·). As we discuss in Section 4.5, this

results in the learner only learning recovery behaviors

rather than learning to stay in G. EIL gets the best of

all worlds - the minimal user burden of HG-DAgger,

with DAgger like performance guarantees.

4.5 Analysis

We briefly state the main results deferring proofs and

counter examples to the appendix.

Let i = 1, · · · , N denote the rounds of the online

game. Let θ1, · · · , θN be the learner parameters in each

Table 1: Different imitation learning algorithms

Algorithm Intervention Rule Loss Function

EIL (ours) Intervene if (s, a) /∈ G `B(·) + λ`C(·)
BC Expert in control `C(·)
DAgger Learner in control `C(·)†
HG-DAgger Intervene if (s, a) /∈ G `C(·)

round. Let `i(θ) be the loss function for round i. We

build on [36] to show that any no-regret algorithm can

achieve near-optimal performance.

Theorem 1 Let `i(θ) = E(s,a)∼dπθi
`(s, a, θ). Let εN =

minθ
1
N

∑N
i=1 `i(θ) be the loss of the best parameter in

hindsight after N iterations. Let γN be the average re-

gret of θ1:N . There exists a θ ∈ θ1:N s.t.

E(s,a)∼dπθ [`(s, a, θ)] ≤ εN + γN (17)

Proof For Theorem 1 and Corollaries, see Appendix A.1

Theorem 1 is a simple, but powerful generalization

because it extends for any loss function `(s, a, θ) and

induced distribution dπθ (s, a). Because our objective is

separable, we can also use this to prove a set of corol-

laries for variants of the EIL algorithm.

Consider the case where we use only the implicit

bounds loss, i.e. only a flag to indicate whether (s, a) is

good enough.

Corollary 1 Let `i(θ) = E(s,a)∼dπθi
`B(s, a, θ). Let εBN

and γBN be the best loss in hindsight and average regret

respectively.

∃θ ∈ θ1:N s.t. E(s,a)∼dπθ [`B(s, a, θ)] ≤ εBN + γBN ,

i.e. we can use EIL to learn a near-optimal policy with

as little as Boolean feedback, e.g. from only e-stop dis-

engagements as long as we employ FTL.

Now consider the case where we use only the inter-

vention loss, i.e. the HG-DAgger [22,16,8] algorithm.

Corollary 2 Let `i(θ) = E(s,a)∼dIπθi
`C(s, a, θ). Let εIN

and γIN be the best loss in hindsight and average regret

respectively.

∃θ ∈ θ1:N s.t. E(s,a)∼dIπθ
[`C(s, a, θ)] ≤ εIN + γIN ,

i.e. we can learn to be near-optimal w.r.t mimicking

intervention recovery. However, such a policy may per-

form arbitrarily poorly when it comes to avoiding inter-

vention in the first place. Although the learner policy

may perfectly mimic the expert recovery, HG-DAgger

provides no explicit incentive for the learner to remain

inside (s, a) ∈ G. We bolster this by providing a counter

example in Appendix B and with empirical observations

in the experiments.

Finally, EIL combines both bound and intervention

losses

8 Jonathan Spencer et al.

Corollary 3 Let `i(θ) = E(s,a)∼dπθi
`B(s, a, θ)

+λE(s,a)∼dIπθi
`C(s, a, θ). Let εN and γN be the best

hindsight loss and average regret respectively. ∃θ ∈ θ1:N
s.t. E(s,a)∼dπθ [`B(s, a, θ)] + λE(s,a)∼dIπθ

[`C(s, a, θ)] ≤
εN + γN ,

i.e. it performs near-optimally on the combination of

the induced bounds and intervention loss.

5 Experiments

We test EIL in a robot driving task where the goal is

to track a coarse reference path in a way that is good

enough (i.e. collision free, smooth) so the expert need

not intervene. The reference path (Fig. 4b,c) may have

sharp turns or pass through obstacles - hence we wish

to learn a controller than can track it appropriately. We

focus on repeated training episodes at specific locations

(right turn, straight hallway) to benchmark how quickly

the robot learns that specific skill from scratch.

5.1 Experimental Setup

Robot Agent – All robot experiments (sim and real)

use the Multi-agent System for non-Holonomic Racing

(MuSHR) driving and simulation platform [44], a 1/10

scale car equipped with: short range lidar, RGBD cam-

era, IMU and NVIDIA Jetson Nano (Fig. 4a). We use

lidar to manually create a prior map, which we local-

ize against at run-time. Sim and real use an identical

model predictive controller (MPC) where:

– State st ∈ S – localized pose and velocity.

– Low-level Control ut – steering angle φt and acceler-

ation.

– Action space A – a fixed library of 64 motion prim-

itives (see Fig. 4b). Each action a(i) is a sequence

of pre-defined control and resulting predicted states

a
(i)
t = (u

(i)
1:H , s

(i)
t:t+H).

– Feature function f : s, a→ Rd – for action primitive

a we compute the average over states in the primitive

horizon st:t+H for each of: 0-1 boundary violation,

absolute curvature to next step, distance to nearest

obstacle, and distance to goal path. (We also include

unity bias feature.)

– Score function Qθ(s, a) = θTf(s, a) – linear in fea-

tures. (Any differentiable function works for this)

– Policy πθ – greedy cost minimizer (red line in Fig. 4b)

πθ(s) = arg mina∈A Qθ(s, a).

– Trajectory ξ = {(st, at, ut)}Tt=1 – a sequence of at

most T state-action-control samples of either/both

robot or human.

At timestep t, the controller evaluates the policy at =

πθ(st). Since at is a motion primitive, consisting of a se-

quence of H controls ut, . . . , ut+H , we execute the first

control ut, observe st+1, and then repeat the process.

Expert and Hyperparameters – In simulation,

the expert uses a set of manually tuned optimal fea-

ture weights θE , over the same score and policy classes

as the learner, πE(s) = arg mina∈A QθE (s, a). We also

set an intervention threshold BE and decide whether

to intervene or cede control by continuously scoring

the current action w.r.t. QE . If the learner action ex-

ceeds BE , the expert supplies subsequent actions until

the score drops back below the threshold. In choosing

BE , the expert effectively defines the size of the good

enough region, and we discuss how its choice affects

performance in Section 5.2. Although a human expert

has no such precise internal QE , θE , or BE , they pro-

vide feedback in a similar way, by intervening and sup-

plying a sequence of nominal or intervention controls

(ut, . . . , ut+N) based on when they perceive the robot

as acting poorly or to avoid collision. We project the se-

quence of expert controls back to the discrete primitive

action space A by minimizing the Fréchet distance2 [2]

between the sequence of states during expert control

and the projected states visited for each action in the

library arg mina∈A F ((st:t+N |ut:t+N), (st:t+N |a)).

Hyperparameter αL determines what fraction of the

learner trajectory prior to intervention is flagged as

good or bad (Eqns 4,5), and αE represents what frac-

tion of the expert recovery trajectory initially remained

in the bad region (Eqn 5). The optimal choice of αL and

αE depends on properties of both the robot and the hu-

man expert, such as MPC horizon and reaction time,

though poorly chosen values smoothly degrade perfor-

mance to be similar to HG-DAgger. For both sim and

real, the MPC horizon is H = 15 steps (∼ 3m), so

we choose αL so that the last H = 15 learner steps

prior to the moment of intervention are flagged as bad.

In our context, MPC horizon length (rather than ex-

pert reaction time) is the dominant factor for choosing

αL since the robot typically lands in a bad state after

contemplating it for H steps, and H is usually much

longer than the expert reaction time. αE depends on

how quickly the expert recovers and returns to G, but

in this context αE = 0 works fine for a skilled expert.

Choosing λ very large or very small utilizes only half the

available feedback, which slows learning. For our envi-

ronment, a fixed λ = 1 worked well, though it is possi-

2 Fréchet distance is a distance metric commonly used to
compare trajectories of potentially uneven length. Informally,
given a person walking along one trajectory and a dog follow-
ing the other without either backtracking, the Fréchet dis-
tance is the length of the shortest possible leash for both to
make it from start to finish.

Expert Intervention Learning: 9

(a) MuSHR driving platform (b) MPC discrete action set
(blue) and chosen action (red)

(c) Generic rectangular track mission

Fig. 4: The Multi-agent System for non-Holonomic Racing (MuSHR) robot is a driving platform that uses model

predictive control over a discrete library of possible trajectories (b), but permits takeover from human supervisor.

Our mission is to complete collision free laps around a rectangular track (c).

ble to adaptively tune λ as the dataset grows. Likewise,

using multiple or sub-optimal experts certainly requires

more care, and the Bayesian approach of [30] inspires a

way to infer appropriate values of αL. We set B = 0 as

it is just a level set threshold for coarsely ranking states.

Because Q may develop some bias, the absolute value

of B is unimportant, though its relative value holds im-

portant lessons, which we discuss in Section 5.2.

Experiment Setup, Baselines, and Evaluation

Each policy improvement iteration n as denoted in Al-

gorithm 1 can either be done by gathering a batch of

samples under the current policy, or in a fully online

manner, updating the policy after each time-step. For

the sake of repeatability, we opt for the batch setting,

further breaking the mission (Fig. 4c) into two portions

trained independently: a straight hallway segment and

a sharp corner. The hallway is interesting because it

is repetitive, i.e. it should learn with few samples. The

corner is interesting because driving through the tip of

the corner has only a modest effect on the feature func-

tion but is catastrophic for safety. All algorithms are

initialized with the same set of (very bad) parameters

and given one full example trajectory. For every im-

provement iteration n, we initialize the car at roughly

the same location, generate a short trajectory (50-70

steps, 10-15m), aggregate, improve, and iterate.

We choose as baselines the algorithms listed in Ta-

ble 1, and evaluate based on 1) the total number of

samples in the environment as well as 2) the num-

ber of samples supplied by the expert. For Behavioral

Cloning (BC) and DAgger, those two numbers will

be identical, since the expert labels every state, though

DAgger has slightly fewer total samples over the same

number of iterations due to learner policy crashing and

terminating early. We hold the number of iterations

constant, so EIL and HG-DAgger have substantially

fewer expert samples since the expert intervenes only

when necessary.

In simulation, we judge success according to action

suboptimality on a fixed validation set DT , where sub-

optimality is Ea∼πL,s∼DT [QE(s, aL) − QE(s, aE)] as a

consistent, low-variance benchmark. With a human, the

standard of “good enough” is very flexible. Our ex-

pert is instructed to intervene as consistently as pos-

sible based on a) collision avoidance and b) “jerkiness”∑
t |φ̇t|. We measure ultimate success by the number

of samples required before the policy consistently exe-

cutes collision-free trajectories and the jerkiness of the

converged policy.

5.2 Experimental Results

MuSHR Simulation Results – From our simulation

experiments, we make the following observations:

Observation 1: EIL outperforms all algorithms on

all datasets both in number of expert samples and total

number of environment samples.

In Fig. 5 we see that EIL achieves the highest per-

formance, while HG-DAgger performs comparably to

DAgger in terms of total samples, but outperforms

DAgger in the number of expert samples since it does

not query the expert on the segments of learner control.

HG-DAgger amounts to an implementation of EIL

with no reliance on implicit feedback, (remove `B term

or make λ very large), which indicates that the improve-

ment in sample efficiency is largely due to the added

benefit of implicit feedback. Surprisingly, the hallway

proves to be the more challenging task in simulation,

because many states are repetitive, and it takes a longer

time to discover the key states for shaping optimal per-

formance. On the physical system, however, added lo-

10 Jonathan Spencer et al.

Hallway

100 200 300 400 500 600
Total Environment Samples

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Q
Er

ro
r -

 E
π L

[Q
E(
s,
a)

−
Q
E(
s,
a E

)] EIL
HG-DAgger
DAgger
BC

(a)

100 200 300 400 500 600
Expert Queries

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Q
Er

ro
r -

 E
π L

[Q
E(
s,
a)

−
Q
E(
s,
a E

)] EIL
HG-DAgger
DAgger
BC

(b)
Right turn

100 200 300 400 500 600
Total Environment Samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

Q
Er

ro
r -

 E
π L

[Q
E(
s,
a)

−
Q
E(
s,
a E

)] EIL
HG-DAgger
DAgger
BC

(c)

100 200 300 400 500 600
Expert Queries

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

Q
Er

ro
r -

 E
π L

[Q
E(
s,
a)

−
Q
E(
s,
a E

)] EIL
HG-DAgger
DAgger
BC

(d)

Fig. 5: Simulation performance of EIL compared to

baselines (see Table 1) in a straight hallway scenario

(a,b) and the right hand turn segment (c,d) pictured in

Fig. 4b.

60 80 100 120 140
Expert Queries

0.0

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e

Q
Er

ro
r -

 E
π L

[Q
E(
s,
a)

−
Q
E(
s,
a E

)] EIL,BE = − 1
EIL,BE = − 0.5
EIL,BE = 0
EIL,BE = 0.5
EIL,BE = 1

Fig. 6: Performance in driving sim after 200 time-steps

for different intervention thresholds BE . Varying BE
confirms intuitions that an overly aggressive expert is

sample inefficient, while an overly passive expert fails

to provide useful feedback.

calization error makes precisely clearing the sharp cor-

ner the more challenging task.

Observation 2: There exists an optimal level of in-

tervention which minimizes both learner error and ex-

pert burden. (Fig. 6)

The hand-crafted πθE expert in simulation lets us

precisely track learner performance as a function of

the expert intervention style, parameterized here by

the intervention threshold BE . In Fig. 6 we explore

the range between an aggressively intervening expert

(BE = −1) and an overly passive expert (BE = 1).

Reducing BE → −∞ shrinks the set of good states to

nothing and mimics behavioral cloning in requiring that

the expert always be in control. The aggressive expert

prevents the learner from making mistakes and visit-

ing diverse states that would speed learning, and thus

burdens the expert by requiring more samples. On the

other hand, by raising the cost threshold BE → ∞, a

passive expert almost never intervenes, giving the agent

too much leeway and the agent fails to learn, receiv-

ing neither correction nor demonstration. Although a

human expert cannot make such precise intervention

style adjustments, this gives a useful heuristic: In im-

plementing EIL (and perhaps in life) some intervention

is helpful, but too much correction will both exhaust

the supervisor and slow the learning process, and too

little will rob the learner of meaningful expertise.

MuSHR Robot with Human Expert – Our ex-

periments with the physical robot and the human ex-

pert corroborate our first observation from simulation

and add the following observation:

Observation 3: Considering implicit feedback pro-

vides clear performance boost over baseline.

The main difference between EIL and HG-DAgger

is that HG-DAgger learns only from the recovery tra-

jectories, discarding all other samples, which we notice

harms performance. Table 2 shows the number of sam-

ples required for the learner to achieve a policy that con-

sistently avoids collision in the right turn scenario. Af-

ter 24 expert demo trajectories, BC never achieves colli-

sion avoidance, demonstrating the difficulty of this task.

HG-DAgger learns collision avoidance with slightly

fewer samples than EIL, but the converged policy (after

24 iterations) is still undesirable, making jerky weaving

maneuvers seen in Fig. 7b. This is unsurprising, be-

cause the HG-DAgger dataset is imbalanced, largely

comprised of jerky explicit “recovery” policy samples

supplied by the expert. EIL benefits from the reinforce-

ment of the implicit approval of the smooth parts of its

steering and the implicit disapproval of any jerky sam-

ples as it swerves towards a wall prior to intervention,

and the inclusion of αE > 0 can teach the robot to avoid

the initial jerky expert states. In Table 2 and Fig. 7 we

see that EIL quickly learns to both avoid collision and

smoothly track the reference in a “good enough” way

for the expert not to intervene.

Expert Intervention Learning: 11

Table 2: Samples required to achieve a zero collision pol-

icy for right turn, jerkiness (
∑
t |φ̇t|) and mean obstacle

proximity (m) of converged policies after 24 iterations

of T = 70 steps.

Alg. Expert Total Jerkiness Obst.
Samps Samps Prox

BC [35] > 1680 > 1680 0.0090 0.341
EIL (ours) 311 1120 0.0135 0.396
HG-DAgger 223 560 0.0217 0.437
Human - - 0.0114 0.675

(a) Behavior Cloning (b) HG-DAgger

(c) EIL (ours) (d) Human demonstrations

Fig. 7: Recorded rollouts of πθm show the policy im-

provement as training progresses for each algorithm.

5.3 DQN Expert and Consistency

In our first experiment, the simulated expert Q func-

tion is a fine-tuned set of linear feature weights, which

means that the expert interventions are consistent w.r.t.

the environment features. Similarly, in our second ex-

periment, the human supervisor is trained to be very

consistent, intervening at approximately the same es-

timated badness (time-to-collision, instability), regard-

less of physical location. In our third experiment we

explore the degree to which an inconsistent expert hin-

ders performance.

In this experiment we learn to drive from raw pixels

using a slightly modified version3 of the OpenAI Gym

CarRacing-v0 environment. We use a Deep Q Network

(DQN) trained with the OpenAI Baselines package[14]

to produce a Q function which serves as both the ex-

pert policy and the scoring function for determining

intervention. The learner policy uses the expert’s hid-

den layer output as the feature values to build a linear

feature-weighted Q function.

(a) (b)

Fig. 8: Performance on CarRacing-v0. EIL and HG-

DAgger are more sample efficient than DAgger , but

inconsistent scoring during training by QE creates a

performance ceiling.

Observation 4: Inconsistency or suboptimality in the

expert caps learner performance.

Unlike the MuSHR environment where the hand-

crafted feature function gave consistent scores, in Car-

Racing the DQN expert scores very inconsistently, often

giving very different scores for states that appear to be

visually similar. This ends up misclassifying some bad

states as good and vice versa, and is a good indication

of the effect that a novice human might have on the

system. In this situation, scoring inconsistently ensures

that there is no unique minimizer of the objective, and

the converged solution is non-deterministic, depending

heavily on θ initialization and other optimization prop-

erties. Fig. 8 shows the effect this has on performance.

Although EIL and HG-DAgger are initially the most

sample efficient, they both reach a performance cap be-

cause of the inconsistent expert policy.

6 Discussion

Learning from demonstration in a way that is both sam-

ple efficient and easy to implement is challenging since

3 We modify the action space to have a low constant ac-
celeration and no braking so that the action space was just
a discrete set of possible steering angles [−1, 0, 1] to more
closely match that of the original DAgger experiment. We
pre-process the 96x96 rgb pixel observation space to LAB
color values, using the A,B channels to form a single chan-
nel binary thresholded image with all relevant features. We
downscale that image to an 8x8 float image, and reshape that
into the final state vector s ∈ R64. The expert network is a
DQN of dims 64, (8), 3 with tanh activation at the hidden
layer. We use the 8 hidden layer outputs as our feature vec-
tor. The learner function class q(s,a) is the set of 27 weights
and biases for the output layer.

12 Jonathan Spencer et al.

many techniques ask human experts to perform burden-

some off-line labeling [36,27,28]. Expert Intervention

Learning introduces a novel way to train robots that

is natural to implement, provides theoretical guaran-

tees, and demonstrates strong performance in practice.

EIL exploits both implicit and explicit feedback from

corrective demonstrations, the benefit of which we see

clearly in the policies produced by the real robot exper-

iment. Relying solely on recovery actions creates an im-

balanced dataset, biased towards actions exhibiting un-

desirable jerky behaviors, whereas the incorporation of

coarse implicit feedback gives a more balanced sample

set, producing both safe and desirable policies (Fig. 7).

Our simulation results also suggest a trade-off for the

expert in deciding how good is “good enough” and how

strictly to enforce it (Fig. 6). With regard to interven-

tions, if the expert can afford to be patient, then less is

more.

Our approach is successful when the expert is con-

sistent and we are satisfied with simply achieving a per-

formance threshold. We posited that EIL is natural and

un-burdensome, but supervision still requires alertness,

and we showed that when the expert is inconsistent in

the timing/location of intervention, the learner perfor-

mance is stunted, hitting an upper bound. Our coarse

goodness threshold was key for harnessing implicit feed-

back, but an interesting avenue of future work is to

incorporate a multi-task learning framework in order

to learn from multiple experts. The expert parameters

were hardcoded into the hyperparameters of these ex-

periments, and future work will look towards a more

general setting to allow for variation between experts.

Acknowledgment

This work was (partially) funded by the DARPA Dis-

persed Computing program, NIH R01 (R01EB019335),

NSF CPS (#1544797), NSF NRI (#1637748), the Of-

fice of Naval Research, RCTA, Amazon, and Honda Re-

search Institute USA.

References

1. Abbeel, P., Ng, A.Y.: Apprenticeship learning via in-
verse reinforcement learning. In: Proceedings of the
twenty-first International Conference on Machine learn-
ing (ICML) (2004)

2. Alt, H., Godau, M.: Computing the Fréchet distance be-
tween two polygonal curves. International Journal of
Computational Geometry & Applications 5, 75–91 (1995)

3. Amershi, S., Cakmak, M., Knox, W.B., Kulesza, T.:
Power to the people: The role of humans in interactive
machine learning. AI Magazine 35, 105–120 (2014)

4. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A
survey of robot learning from demonstration. Robotics
and Autonomous Systems (2009)

5. Bajcsy, A., Losey, D.P., O’Malley, M.K., Dragan, A.D.:
Learning from physical human corrections, one feature at
a time. In: Proceedings of the 2018 ACM/IEEE Inter-
national Conference on Human-Robot Interaction (HRI)
(2018)

6. Bajcsy, A., Losey, D.P., O’Malley, M.K., Dragan, A.D.:
Learning robot objectives from physical human interac-
tion. In: Proceedings of the 1st Annual Conference on
Robot Learning (CoRL). PMLR (2017)

7. Bi, J., Dhiman, V., Xiao, T., Xu, C.: Learning from in-
terventions using hierarchical policies for safe learning.
In: Proceedings of the AAAI Conference on Artificial In-
telligence, vol. 34-06, pp. 10352–10360 (2020)

8. Bi, J., Xiao, T., Sun, Q., Xu, C.: Navigation by imita-
tion in a pedestrian-rich environment. arXiv preprint
arXiv:1811.00506 (2018)

9. Celemin, C., Ruiz-del Solar, J.: An interactive framework
for learning continuous actions policies based on correc-
tive feedback. Journal of Intelligent & Robotic Systems
95, 77–97 (2019)

10. Chen, M., Nikolaidis, S., Soh, H., Hsu, D., Srinivasa, S.:
Planning with trust for human-robot collaboration. In:
Proceedings of the 2018 ACM/IEEE International Con-
ference on Human-Robot Interaction (HRI) (2018)

11. Chernova, S., Veloso, M.: Interactive policy learning
through confidence-based autonomy. Journal of Artifi-
cial Intelligence Research (2009)

12. Choudhury, S., Dugar, V., Maeta, S., MacAllister, B.,
Arora, S., Althoff, D., Scherer, S.: High performance and
safe flight of full-scale helicopters from takeoff to landing
with an ensemble of planners. Journal of Field Robotics
(JFR) (2019)

13. Daumé III, H., Langford, J., Marcu, D.: Search-based
structured prediction. Machine Learning Journal (MLJ)
(2009)

14. Dhariwal, P., Hesse, C., Klimov, O., Nichol,
A., Plappert, M., Radford, A., Schulman, J.,
Sidor, S., Wu, Y., Zhokhov, P.: Openai baselines.
https://github.com/openai/baselines (2017)

15. Fisac, J.F., Gates, M.A., Hamrick, J.B., Liu, C., Hadfield-
Menell, D., Palaniappan, M., Malik, D., Sastry, S.S.,
Griffiths, T.L., Dragan, A.D.: Pragmatic-pedagogic value
alignment. Robotics Research p. 49–57 (2019)

16. Goecks, V.G., Gremillion, G.M., Lawhern, V.J., Valasek,
J., Waytowich, N.R.: Efficiently combining human
demonstrations and interventions for safe training of au-
tonomous systems in real-time. In: Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, pp.
2462–2470 (2019)

17. Grollman, D.H., Jenkins, O.C.: Dogged learning for
robots. In: Proceedings 2007 IEEE International Con-
ference on Robotics and Automation (ICRA) (2007)

18. Gupta, S., Davidson, J., Levine, S., Sukthankar, R., Ma-
lik, J.: Cognitive mapping and planning for visual navi-
gation. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) (2017)

19. Hadfield-Menell, D., Russell, S.J., Abbeel, P., Dragan, A.:
Cooperative inverse reinforcement learning. In: Advances
in Neural Information Processing Systems (NeurIPS)
(2016)

20. Jain, A., Wojcik, B., Joachims, T., Saxena, A.: Learn-
ing trajectory preferences for manipulators via iterative
improvement. In: Advances in Neural Information Pro-
cessing Systems (NeurIPS) (2013)

Expert Intervention Learning: 13

21. Judah, K., Fern, A.P., Dietterich, T.G.: Active imitation
learning via reduction to iid active learning. In: 2012
AAAI Fall Symposium Series (2012)

22. Kelly, M., Sidrane, C., Driggs-Campbell, K., Kochender-
fer, M.J.: Hg-dagger: Interactive imitation learning with
human experts. In: 2019 International Conference on
Robotics and Automation (ICRA) (2019)

23. Kim, B., Farahmand, A., Pineau, J., Precup, D.: Learn-
ing from limited demonstrations. In: Advances in Neural
Information Processing Systems (NeurIPS) (2013)

24. Kim, B., Pineau, J.: Maximum mean discrepancy imita-
tion learning. In: Robotics: Science and Systems (RSS)
(2013)

25. Kollmitz, M., Koller, T., Boedecker, J., Burgard, W.:
Learning human-aware robot navigation from physi-
cal interaction via inverse reinforcement learning. In:
2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 11025–11031. IEEE
(2020)

26. Laskey, M., Chuck, C., Lee, J., Mahler, J., Krishnan,
S., Jamieson, K., Dragan, A., Goldberg, K.: Comparing
human-centric and robot-centric sampling for robot deep
learning from demonstrations. In: IEEE International
Conference on Robotics and Automation (ICRA) (2017)

27. Laskey, M., Lee, J., Hsieh, W., Liaw, R., Mahler, J., Fox,
R., Goldberg, K.: Iterative noise injection for scalable im-
itation learning. arXiv preprint arXiv:1703.09327 (2017)

28. Laskey, M., Staszak, S., Hsieh, W.Y.S., Mahler, J., Poko-
rny, F.T., Dragan, A.D., Goldberg, K.: SHIV: Reducing
supervisor burden in dagger using support vectors for ef-
ficient learning from demonstrations in high dimensional
state spaces. In: 2016 IEEE International Conference on
Robotics and Automation (ICRA) (2016)

29. Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., Quillen,
D.: Learning hand-eye coordination for robotic grasp-
ing with deep learning and large-scale data collection.
The International Journal of Robotics Research (IJRR)
(2018)

30. Loftin, R., Peng, B., MacGlashan, J., Littman, M.L.,
Taylor, M.E., Huang, J., Roberts, D.L.: Learning be-
haviors via human-delivered discrete feedback: modeling
implicit feedback strategies to speed up learning. Au-
tonomous Agents and Multi-Agent Systems (2016)

31. MacGlashan, J., Ho, M.K., Loftin, R., Peng, B., Wang,
G., Roberts, D.L., Taylor, M.E., Littman, M.L.: Inter-
active learning from policy-dependent human feedback.
In: Proceedings of the 34th International Conference on
Machine Learning (ICML) (2017)

32. Menda, K., Driggs-Campbell, K.R., Kochenderfer, M.J.:
EnsembleDAgger: A Bayesian Approach to Safe Imita-
tion Learning. arXiv preprint arXiv:1807.08364 (2018)

33. Osa, T., Pajarinen, J., Neumann, G., Bagnell, J.A.,
Abbeel, P., Peters, J.: An algorithmic perspective on im-
itation learning. Foundations and Trends in Robotics
(2018)

34. Packard, B., Ontañón, S.: Policies for active learning from
demonstration. In: 2017 AAAI Spring Symposium Series
(2017)

35. Pomerleau, D.A.: Alvinn: An autonomous land vehicle
in a neural network. In: Advances in Neural Information
Processing Systems (NeurIPS) (1989)

36. Ross, S., Gordon, G., Bagnell, D.: A reduction of im-
itation learning and structured prediction to no-regret
online learning. In: Proceedings of the fourteenth inter-
national conference on artificial intelligence and statistics
(AIStats) (2011)

37. Ross, S., Melik-Barkhudarov, N., Shankar, K.S., Wendel,
A., Dey, D., Bagnell, J.A., Hebert, M.: Learning monoc-
ular reactive UAV control in cluttered natural environ-
ments. In: IEEE International Conference on Robotics
and Automation (ICRA) (2013)

38. Sadat, A., Ren, M., Pokrovsky, A., Lin, Y.C., Yumer,
E., Urtasun, R.: Jointly learnable behavior and trajec-
tory planning for self-driving vehicles. arXiv preprint
arXiv:1910.04586 (2019)

39. Sadigh, D., Sastry, S.S., Seshia, S.A., Dragan, A.: Infor-
mation gathering actions over human internal state. In:
2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (2016)

40. Saunders, W., Sastry, G., Stuhlmueller, A., Evans, O.:
Trial without error: Towards safe reinforcement learning
via human intervention. arXiv preprint arXiv:1707.05173
(2017)

41. Shalev-Shwartz, S.: Online learning and online convex op-
timization. Foundations and Trends in Machine Learning
4(2), 107–194 (2012)

42. Spencer, J., Choudhury, S., Barnes, M., Schmittle, M.,
Chiang, M., Ramadge, P., Srinivasa, S.: Learning from
interventions: Human-robot interaction as both explicit
and implicit feedback. In: Robotics: Science and Systems
(RSS) (2020)

43. Spencer, J., Choudhury, S., Venkatraman, A., Ziebart,
B., Bagnell, J.A.: Feedback in imitation learning:
The three regimes of covariate shift. arXiv preprint
arXiv:2102.02872 (2021)

44. Srinivasa, S.S., Lancaster, P., Michalove, J., Schmittle,
M., Summers, C., Rockett, M., Smith, J.R., Choudhury,
S., Mavrogiannis, C., Sadeghi, F.: MuSHR: A Low-Cost,
Open-Source Robotic Racecar for Education and Re-
search. arXiv preprint arXiv:1908.08031 (2019)

45. Sun, W., Venkatraman, A., Gordon, G.J., Boots, B., Bag-
nell, J.A.: Deeply AggreVaTeD: Differentiable Imitation
Learning for Sequential Prediction. In: Proceedings of
the 34th International Conference on Machine Learning
(ICML) (2017)

46. Zinkevich, M.: Online convex programming and gener-
alized infinitesimal gradient ascent. In: Proceedings of
the 20th International Conference on Machine Learning
(ICML) (2003)

A Appendix - Proofs

A.1 Reduction to no-regret, online learning

The general non i.i.d optimization we wish to solve is

min
π

E(s,a)∼dI
π
(s,a)`C(s, a, θ)

+ λE(s,a)∼dπ(s,a)`B(s, a, θ). (18)

We’ll directly prove the general setting here rather than prov-
ing individually for `C and `B .

We reduce this optimization problem to a sequence of
convex losses `i(θ) where the i-th loss is a function of the
distribution at that iteration, `i(θ) = E(s,a)∼dI

i
`C(s, a, θ) +

λE(s,a)∼di`B(s, a, θ) In our algorithm, the learner at itera-

14 Jonathan Spencer et al.

tion i applies Follow-the-Leader (FTL)

θi+1 = arg min
θ

i∑
t=1

`t(θ)

= arg min
θ

i∑
t=1

E(s,a)∼dI
t
`C(s, a, θ)

+ λE(s,a)∼dts`B(s, a, θ)

(19)

Since FTL is a no-regret algorithm, we have the average
regret

1

N

N∑
i=1

`i(θi)−min
θ

1

N

N∑
i=1

`i(θ) ≤ γN (20)

go to 0 as N → ∞, with Õ(1
N

) for strongly convex `i, (See
Theorem 2.4 and Corollary 2.2 in [41])

In this framework, we restate and prove Thm. 1.

Theorem 2 Let `i(θ) = E(s,a)∼dπθi
`(s, a, θ). Also let εN =

minθ
1
N

∑N
i=1 `i(θ) be the loss of the best parameter in hind-

sight after N iterations. Let γN be the average regret of θ1:N .
There exists a θ ∈ θ1:N s.t.

E(s,a)∼dπθ
[`(s, a, θ)] ≤ εN + γN (21)

Proof The performance of the best learner in the sequence
θ1, · · · , θN must be smaller than the average loss of each
learner on its own induced distribution (min smaller than
average)

min
θ∈θ1:N

E(s,a)∼dπθ
[`(s, a, θ)] ≤

1

N

N∑
i=1

E(s,a)∼dπθi
[`(s, a, θi)]

(22)

Using (20) we have

1

N

N∑
i=1

E(s,a)∼dπθi
[`(s, a, θi)]

≤ γN + min
θ

1

N

N∑
i=1

E(s,a)∼dπθi
[`(s, a, θ)]

≤ γN + εN

(23)

This proof can be extended for finite sample cases follow-
ing the original DAgger proofs. This theorem applies to each
portion of the objective individually, yielding regret terms γBN
and γIN which each individually go to zero as N → ∞, thus
we are guaranteed that the combined objective as well as each
individual objective is zero regret.

B Appendix - HG-DAgger counter example

Several methods on learning from interventions [22,16,8] have
proposed a modified form of the DAgger algorithm, first
called HG-DAgger [22]. Recall that in HG-DAgger, we only
use the intervention loss `C(.), discarding all samples of robot
control and only regress to the additional samples of hu-
man control at each iteration. Here we construct a counter-
example to show when that approach fails.

The MDP is such that the learner can choose between
two actions - Left (L) and Right (R) only at states s0 and

s1. Unknown to the learner, but known to the expert, some
of the edges are associated with costs. The expert deems a
”good enough” state as having value of −9. Hence whenver
the learner enters s1, the expert takes over to intervene and
demonstrates (s1, L).

s0start

s1

s2

s3

s4 s5

L

R

(+100)

L

R (-10)

(-50)

Fig. 9: Counter example for HG-Dagger. Edges without

costs are assumed to have c = 0, and a single edge

leaving a node corresponds to taking any action.

HG-DAgger only keeps this intervention data and uses
it as classification loss. Let’s say it is using a tabular policy. If
it learns the policy (s0, L) and (s1, L) - it will indeed achieve
`c(s, a, θ) = 0. However, the expert will continue to intervene
as this policy always exits the good enough state

Let’s look at all policies and their implicit bounds and
intervention losses. Assume we get a penalty of 1 for every
bad state or misclassified action. We have:

1. Policy (s0, L), (s1, L): Loss `B = 2, `C = 0
2. Policy (s0, L), (s1, R): Loss `B = 2, `C = 1
3. Policy (s0, R), (s1, L): Loss `B = 0, `C = 0
4. Policy (s0, R), (s1, R): Loss `B = 0, `C = 0

The last two policies have the same intervention loss be-
cause the induced distribution is such that these policies never
result in interventions (even though one learns an incorrect
intervention action).

HG-DAgger looks at only the last column and hence my
not end up learning (s0, R). EIL on the other hand will.

